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Constant-sign Lyapunov functionals in the problem of
the stability of a functional differential equation�
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Abstract

The stability of the zero solution of a non-autonomous functional differential equation of the delayed type is investigated by
means of limiting equations and a constant-sign Lyapunov functional, which has a constant-sign derivative. Special cases when
the Lyapunov functional and its derivative are explicitly independent of time and the case of an almost periodic equation are also
considered. The problem of stabilizing a pendulum in the upper unstable position and the problem of stabilizing the rotational
motion of a rigid body are solved as examples.
© 2007 Elsevier Ltd. All rights reserved.

1. Limiting equations

Suppose Rp is a real linear space of p-vectors x, x′ = (x1, x2, . . ., xp) with a norm |x| (a prime denotes trans-
position), h > 0 is a real number, C is the Banach space of continuous functions �: [−h, 0] → Rp with a norm
||�|| = sup(|�(s)|, − h ≤ s ≤ 0) and, for H > 0,

If x: R → Rp is a continuous function, then, for t ∈ R, the function xt ∈ C is defined by the equality

A right-hand derivative is denoted by ẋ(t)
The functional differential equation with a finite delay

(1.1)

is considered where f: R+ × CH → Rp is a continuous function which satisfies the conditions:1,2

a) it is bounded in each set R+ × C̄L, C̄L = {� : ||�|| ≤ L < H}:
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b) it satisfies the Lifschits condition with respect to � in each compact set K ⊂ CH:

c) it is uniformly continuous in each set R+ × K, where K is an arbitrary compact set from CH, i.e., for any � > 0, a
� = �(�, K) > 0 exists such that

The smoothing of the solutions of Eq. (1.1) as t increases follows from the first condition and, in particular, if x = x(t,
�, �) is a solution of Eq. (1.1) which satisfies the initial condition x� = � then, for the values t ≥ � + h, the function
xt ∈ �, where � ⊂ CH is the union of the family of imbedded compact sets:2

The uniqueness of the solution x = x(t, �, �) of Eq. (1.1) which satisfies the initial condition x� = � follows from
the second condition and, moreover, this solution is defined in the maximum interval [� − h, �] and, if � < ∞, then
||xt(�, �)|| → H when t → ∞,2 where

The precompactness of the family of shifts

in a certain space F of continuous functions which are defined in the set R × � (Ref. 2) follows from the third condition.
Hence, a subsequence {tnk} and a function f* ∈ F exist for each sequence tn → ∞ such that the sequence of functions

fk(t, �) = f(tnk + t, �) converges in F to the function f*. Denoting the family of limit functions by �*, we note that, if
f* ∈ �*, then

The equation

(1.2)

where the function f* ∈ �* is defined in the set R × �, is called the limiting equation to Eq. (1.1).
Note that a condition of the form of 2 is also satisfied in the case of the function f*, and the solution x = x*(t, �, �)

of Eq. (1.2) is therefore unique for each initial point (�, �) ∈ R × �. Since f∗� ∈ �∗ for each � ∈ R, we shall determine
its solutions for each Eq. (1.2) when � = 0, x = x*(t, �) = x*(t, 0, �).

We shall make use of Theorem 1.1 from Ref. 1 (see also Ref. 2) in determining the correlation between the solutions
of Eq. (1.1) and the solutions of Eq. (1.2).

Suppose x = x(t, �, �) is a solution which is defined for all t ≥ � − h and that �+(�, �) is its positive limit set in the
space C: the point p ∈ �+(�, �), if the sequence tn → ∞ exists, is such that x(n)

t (�, �) → p when n → ∞, where

The following property of the quasi-invariance of the set �+(�, �) is determined by means of the limiting equations
(1.2).2 If x = x(t, �, �) is a solution of Eq. (1.1) which is fixed and bounded:

then, for each limit point p ∈ �+(�, �), a limiting Eq. (1.2) exists such that the relation

is satisfied in the case of its solution x*(t, 0, p).
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This property, which is analogous to the property of the invariance of the positive limit set of the solution of an
autonomous equation3 enabled the use of Lyapunov functionals with a derivative of constant sign in problems concerned
with the limiting behaviour of the solution of the non-autonomous Eq. (1.1),4 to be validated.

2. The stability of the zero solution of Eq. (1.1)

We will now investigate a stability problem using constant-sign Lyapunov functionals.
Suppose V: R+ × CH → R+ is a certain continuous functional and that x = x(t, �, �) is a certain solution of Eq. (1.1).

By means of the relation

it is possible to determine the upper right-hand derivative of the functional V at a point (�, �).
We will assume that

where W: R+ × C0 → R+ is a continuous functional which is bounded and uniformly continuous in the set R+ × K for
each compact set K ⊂ C0.

Like the family �, the family of shifts

will be precompact in a certain space FW of the functionals

Hence, it is possible to determine the family of functions which are limiting to W {W*: R × �0 → R+} and the family
of limiting pairs (f*, W*).4

The following definitions will be important later.

Definition 2.1. Suppose (f*, W*) is the limiting pair which is determined by the sequence tn → + ∞. We define the
set V−1∞ (t, c), which is specified by the functional V for each t ∈ R and each c ∈ R, as the set of points for each of which
a sequence {�n ∈ C0: �n → �} exists such that, when n → ∞, V(tn + t, �n) → c. In particular,

Definition 2.2. The zero solution x = 0 is stable with respect to the given limiting pair (f*, W*) and the corresponding
set V−1∞ (t, 0) if, for any � > 0, a � = �(�) > 0 exists such that, for any solution

of Eq. (1.2),

Definition 2.3. The zero solution x = 0 is uniformly stable with respect to the limiting family {(f∗, W∗), V−1∞ (t, 0)} if
the number � > 0 in Definition 2.2 is independent of the choice of the limiting pair (f*, W*).

Definition 2.4. The zero solution x = 0 is asymptotically stable with respect to the given limiting pair (f*, W*) and
the corresponding set V−1∞ (t, 0) if it is stable and a � > 0 exists for which, for any � > 0, a T = T(�) > 0 exists such that,
for any solution
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of Eq. (1.2),

Definition 2.5. The zero solution x = 0 is uniformly asymptotically stable with respect to the limiting family
{(f∗, W∗), V−1∞ (t, 0)} if the numbers � > 0 and T > 0 in Definition 2.4 are independent of the choice of the limiting pair
(f*, W*).

The definitions which have been introduced enable us to derive the sufficient conditions of stability and asymptotic
stability when a non-negative functional with a non-positive derivative exists.

Theorem 2.1. We assume that:

1) a continuous functional

exists in the domain R+ × C0 with a derivative

2) the zero solution x = 0 is uniformly asymptotically stable with respect to the limit set {(f∗, W∗), V−1∞ (t, 0)}.

The zero solution of Eq. (1.1) is then stable.

Proof. We will assume that the solution of Eq. (1.1) x = 0 is unstable: for a certain � ∈ R+, a �0 > 0 and sequences
{�n: ||�n|| → 0} and �n → ∞ exist when n → ∞ such that

(2.1)

Suppose � > 0 is a number which is determined from Condition 2 of the theorem. We put

It follows from inequality (2.1) that a sequence of values �n → ∞ exists such that

(2.2)

It follows from the continuity of the functional V = V(t, �) at the point � = 0 that

and, moreover, it can be assumed that the sequence V
(n)
0 is a monotonically decreasing sequence. From Condition 1 of

the theorem, for each solution x = x(t, �, �n) we derive, for each t ≥ 0, the relation

(2.3)

Suppose T = T(�/2) > 0 is a number which is determined from Condition 2 of the theorem in accordance with
Definition 2.5. For any limiting Eq. (1.2), each solution of it x = x*(t, �) is such that
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satisfies the inequality

(2.4)

We put 	n = � + �n − T and make up the sequence

On taking account of the fact that

from relations (2.2) we have

(2.5)

Inequalities (2.3) are easily reduced to the form

(2.6)

From the sequence {	n}, we select the subsequence {	nk} for which

According to Theorem (1.1) from Ref. 1, the sequence {x(	nk + t, 	nk, �nk)} will converge uniformly with respect to
t ∈ [−�, �] for each � ≥ 0 to the solution x = x*(t, �*) of Eq. (1.2). For this solution, we obtain from relations (2.5)

(2.7)

On taking the limit as n → ∞, we find from inequalities (2.6) that

and this, according to relations (2.7), contradicts the choice of the number T. �
The following theorem, in which a continuous, strictly monotonically decreasing function is denoted by a: R+ → R+,

is proved in a similar manner.

Theorem 2.2. If, in addition to the conditions of Theorem (2.1), the estimate V(t, �) ≤ a(||�||) when (t, �) ∈ R+ × C0
holds for the functional V(t, �), then the zero solution of Eq. (1.1) is uniformly stable.

Note that, subject to the conditions of Theorems 2.1 and 2.2, the set V−1∞ (t, 0) ∩ {W∗(t, �) = 0} is invariant with
respect to Eq. (1.2) for each limiting pair (f*, W*).

Correspondingly, we denote the set

(2.8)

by M(t, c0) and the subset of the set M(t, c0) that is the largest subset which is invariant with respect to the limiting Eq.
(1.2) by N(c0).

Theorem 2.3. We assume that Conditions 1 and 2 of Theorem 2.1 are satisfied and, also, the following condition:
for each limiting pair (f*, W*) and for each small value c = c0 = const ≥ 0, the set

The zero solution of Eq. (1.1) is then asymptotically stable.

Theorem 2.4. We assume that the conditions of Theorem 2.1 are satisfied and, also, the following condition: a limiting
pair (f*, W*) exists such that, for any small c = c0 > 0, the set (2.8) does not contain solutions of the limiting Eq. (1.2).

The zero solution of Eq. (1.1) is then asymptotically stable uniformly with respect to �.
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The correctness of Theorems 2.3 and 2.4 follows from Theorem 2.1 and Theorems 2.1 and 3.4 in Ref. 4.

Theorem 2.5. We assume that the conditions of Theorem 2.2 are satisfied and, also, the following condition: for each
limiting pair (f*, W*) and for each small c = c0 > 0, the set (2.8) does not contain solutions of the limiting Eq. (1.2).

The zero solution of Eq. (1.1) is then uniformly asymptotically stable.

Proof. According to Theorem 2.2, the solution x = 0 of Eq. (1.1) is uniformly stable.
Suppose � is a number which is determined from Condition 2 of Theorem 2.1 according to Definition 2.5. We now

determine the domain C̄H0 (0 < H0 ≤ �1 = �/2), the solutions from which are uniformly bounded by the domain
C̄�1 :

(2.9)

To prove the theorem, it is sufficient to show that x = 0 is the point of uniform attraction of the solutions

We shall assume the opposite: a number �0 > 0 exists for which, in the case of any sequence 
n → + ∞, a sequence
of initial values (�n, �n) ∈ R+ × C̄H0 exists such that the solutions x = x(t, �n, �n) satisfy the inequality

(2.10)

For given �0 > 0, we determine the number � = �(�0) > 0 using the property of uniform stability. It then follows from
inequalities (2.9) and (2.10) that

(2.11)

Along each solution x = x(t, �n, �n), the function V(n)[t] = V(t, xt(�n, �n)) (t ≥ �n) is monotonically decreasing with
respect to t and, at the same time, V (n)[t] ↘ 0 when t → +∞ (see Ref. 4).

For a certain sequence {c(n)
0 }, c(n)

0 ↘ 0 when n → ∞, we choose a sequence {	n} such that

Then,

(2.12)

We form the sequences

and choose the subsequences for which

According to Theorem 1.1 from Ref. 1, the sequence of functions

will converge to the solution x = x*(t, 0, �*) of the equation ẋ(t) = g∗(t, xt). At the same time, it follows from the
estimates (2.11) that

(2.13)

Taking the limit as nk → +∞, we obtain from relations of the form of (2.6), when account is taken of relation (2.12),
that

But this, together with estimates (2.13), contradicts the last condition of the theorem. �
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3. The stability of an almost periodic equation

Suppose the right-hand side of Eq. (1.1) is defined in the set R × CH and is a continuous and almost periodic function
of t according to the following definition.

Definition 3.1. The function f: R × CH → Rp is said to be almost periodic in t if, for each compact set K ⊂ CH and
each number � > 0, a number l = l(K, �) > 0 exists such that, for each b ∈ R, a number T ∈ [b, b + l] is found such that

The number T is called the �-almost period of the function f.

The continuous, almost periodic function f is uniformly continuous in the set R × K and the construction of the
limiting equations therefore has the following special features. The family of shifts

is precompact in the space F of functions f: R × � → R which are almost periodic in t with a metric

(3.1)

where Kn ⊂ � are the compact sets mentioned in Section 1. This metric is stronger compared with the metric introduced
earlier in Ref. 2 for the general case of the non-autonomous Eq. (1.1).

It is easy to derive the following property of an almost periodic function.

Lemma 3.1. In the case of a function f: R × CH → Rp which is almost periodic in t, a limiting function f* ∈ �* exists
which is identical to it in the set R × �.

Therefore, at least one of the limiting Eq. (1.2) is identical to the initial Eq. (1.1).

We will assume that the functional V(t, �) is continuous and almost periodic in t in accordance with Definition 3.1.
The family of shifts of this functional

will be precompact in the space FV of almost periodic functionals V: R × � → R+ with a metric similar to (3.1).
Consequently, a family �∗

V of functionals V* which are limiting to V is defined and, among these, there is also a
functional which is identical to V for which the set

From these constructions and Theorem 2.4, we have the following result.

Theorem 3.1. Suppose Eq. (1.1) is almost periodic and such that:

1) a functional V: R × C0 → R+ exists which has a derivative with an estimate V̇ (t, �) ≤ 0;
2) the zero solution x = 0 is uniformly asymptotically stable with respect to the set (f*, {V*(t, �) = 0});
3) the set {V(t, �) > 0}∩ {V(t, �) = 0} does not contain solutions of Eq. (1.1).

The zero solution of Eq. (1.1) is then asymptotically stable uniformly with respect to �.

4. Modification of Theorems 2.1 to 2.5

In the special case when the functionals V and W are not explicitly time-dependent, the conditions of Theorems
2.1–2.5 can be reduced to the corresponding conditions with respect to the initial Eq. (1.1) by introducing the following
definitions.



346 S.V. Pavlikov / Journal of Applied Mathematics and Mechanics 71 (2007) 339–350

Definition 4.1. The zero solution of Eq. (1.1) is uniformly stable with respect to the set {V(�) = 0} if, for any � > 0,
a � = �(�) > 0 exists such that, for all � ∈ {||�|| < �}∩ {V(�) = 0}:

Definition 4.2. The zero solution of Eq. (1.1) is uniformly asymptotically stable with respect to the set {V(�) = 0} if
it is uniformly stable with respect to this set and a � > 0 also exists for which, for any � > 0, a T = T(�) > 0 exists such
that, for all � ∈ {||�|| < �}∩ {V(�) = 0}:

It can be shown in a similar manner to the derivation of Theorem 2.1 in Ref. 2 that, if the zero solution of Eq. (1.1) is
uniformly asymptotically stable with respect to the set {V(�) = 0}, then the solution x = 0 is uniformly asymptotically
stable with respect to the limiting family ((f*, W*), V−1(0)). Correspondingly, we have the following result from
Theorem 2.2.

Theorem 4.1. We assume that:

1) a functional V(�) ≥ 0 with a derivative V̇ (t, �) ≤ 0 exists in the domain C0;
2) the zero solution of Eq. (1.1) is uniformly asymptotically stable with respect to the set {V(�) = 0}.

It is then uniformly stable.

Definition 4.3. The set

(4.1)

does not contain solutions of Eq. (1.1) uniformly with respect to � ∈ R+ if a T = T(c0) > 0 exists such that, for any
� ∈ M(c0),

It can be shown that, if the initial Eq. (1.1) has the property corresponding to definition (4.3), then the last condition
of Theorem 2.5 is satisfied for the family of limiting equations (1.2).

Correspondingly, the following theorem holds.

Theorem 4.2. We assume that the conditions of Theorem 4.1 are satisfied and, also, the following condition: the set
(4.1) does not contain solutions of Eq. (1.1) uniformly with respect to � ∈ R+.

The zero solution of Eq. (1.1) is then uniformly asymptotically stable.
The advantage of the more particular Theorems 4.1 and 4.2 compared with Theorems 2.2 and 2.5 lies in the fact

that they do not contain conditions on the family of limiting equations and limiting functionals, and this means that
there is no need to carry out their corresponding construction.

On the basis of the enhancement of the definitions of stability of the solution x = 0 with respect to a given set, it is
possible to derive results which are analogous to Theorems 2.1–2.5 with conditions only imposed on the initial Eq.
(1.1) and the functionals V(t, �) and W(t, �). For example, it is possible, by introducing the following definitions, to
obtain simpler sufficient conditions of asymptotic stability.

Definition 4.4. The zero solution of Eq. (1.1) is uniformly stable with respect to the set {V(t, �) = 0} if, for any � ∈ R+

and for any � > 0, �1 = �1(�) > 0, �2 = �2(�) > 0 exist such that, for any � ∈ {||�|| < �1}∩ {V(�, �) < �2}:
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The zero solution of Eq. (1.1) is uniformly asymptotically stable with respect to the set {V(t, �) = 0} if it is uniformly
stable with respect to this set and �1 > 0 �2 > 0 exist for which, for any � ∈ R+ and � > 0, a T = T(�) > 0 exists such
that, for all � ∈ {||�|| < �1}∩ {V(�, �) < �2}:

Theorem 4.3. We assume that:

1) a continuous functional

exists in the domain R+ × C0 and, in the domain {V(t, �) = 0}, its derivative satisfies the inequality

2) the zero solution of Eq. (1.1) is uniformly asymptotically stable with respect to the set {V(t, �) = 0}.

The solution is then uniformly asymptotically stable.

The modification of Theorem 2.5, which provides global asymptotic stability of the zero solution of Eq. (1.1) with
a domain of definition R+ × C, is important.

Definition 4.5. The solutions of Eq. (1.1) are uniformly bounded if, for any � ≥ 0 and any H0 > 0, a H1 = H1(H0) > 0
is found such that, for any �: ||�|| < H0:

Theorem 4.4. We assume that, in addition to the conditions of Theorem 2.5, the solutions of Eq. (1.1) are uniformly
bounded.

The zero solution of Eq. (1.1) is then uniformly globally asymptotically stable.

5. Examples

5.1. Example of the stabilization of a pendulum in the upper unstable position

Consider the problem of the stabilization of a mathematical pendulum in the upper unstable equilibrium position
by a moment applied to it on the axis of suspension in a linear formulation.

The linear approximation equations can be reduced to the form5

(5.1)

where x1 = � is the angle of inclination of the pendulum from the vertical, x2 = �̇ and u is the control moment applied
to the pendulum.

We will assume that, in the pendulum control system, the coordinates x1, x2, x3 are determined with a delay � = �(t),
0 ≤ �(t) ≤ h and that �(t) is a function which is uniformly continuous in t ∈ R+. The control moment

(5.2)

is given
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We define the Lyapunov functional by the equality

This functional is non-negative and, when h ≤ 1/18, it has a derivative, by virtue of relations (5.1) and (5.2), which
satisfies the inequality

The system, which is the limiting system to (5.1), will have the form

(5.3)

It is obvious that the solution x1 = x2 = x3 = 0 of system (5.3) is asymptotically stable with respect to the set

It follows from the estimate for the derivative of the functional that the set

The set {V = c = const > 0}∩ {W = 0} does not contain solutions of system (5.3).
On the basis of Theorem 4.4, it can be asserted, in the case of the control moment (5.2), that the zero position of

system (5.1) will be globally uniformly asymptotically stable.
This example was considered as a model example previously6 and an algorithm for constructing a control with

delayed feedback under the action of perturbations was presented. The solutions obtained above are the analytical
solutions of the problem.

5.2. The problem of stabilizing the rotational motion of a rigid body

We will denote the moments of inertia about the principal Ox, Oy and Oz axes for a body with a fixed point O by
A, B and C, and p, q and r are the projections of the angular velocity on to these axes. We shall assume that, under the
action of a moment

the body executes unsteady rotational motion of the form

(5.4)

about the Oz axis, where r0(t) is a function which is uniformly continuous in t ∈ R+.
In order to solve the problem of stabilizing this motion by control moments M1, M2, M3, we will construct the

equations of the perturbed motion

(5.5)

where x1 = p, x2 = q, x3 = r − r0.
We will assume that, in the system controlling the body, the coordinates x1, x2 and x3 are determined with delays

�1(t), �2(t) and �3(t), 0 ≤ �k(t) ≤ h > 0 and that �i, i = 1, 2, 3 are uniformly continuous functions when t ∈ R+.
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We separate the solution of the problem of stabilizing the motion (5.4) by the moments

into two problems: the problem of stabilization with respect to x1 and x2 on the basis of the first two equations of system
(5.5) and the problem of asymptotic stability with respect to x3 on the basis of the third equation. These problems can
be respectively solved in the case of the condition A > B > C (or A < B < C) using the constant-sign functionals

Suppose the amplification factors b1 and b2 satisfy the conditions

(5.6)

The system, which is the limiting system to (5.5), has the form

(5.7)

The derivative of the functional V1 has the limit

The set

does not contain solutions of system (5.7). According to Theorem 2.5 from Ref. 1, we obtain that the zero solution of
system (5.5) is uniformly asymptotically stable with respect to x1 and x2.

The derivative of the functional V2 has the estimate

Taking account of the fact that the zero solution of system (5.5) is uniformly asymptotically stable in x1 and x2, it
can be asserted that the zero solution x = 0 of system (5.5) is uniformly asymptotically stable with respect to the set

By virtue of the fact that
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the limiting system (5.7) has the form

(5.8)

The set

does not contain solutions of system (5.8).
Using Theorem 4.2, we infer that the rotation (5.4) about the largest and smallest inertial axes under the action of

moments (5.5) with amplification factors which satisfy conditions (5.6) is uniformly asymptotically stable.
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